VOLUME D09 GEOPHYSICAL INVESTIGATION RESISTIVITY SURVEY

Volume	Km from	Km to	Task	Length	Survey Type
D01	800	1+300	i	0.5	Seismic
D02	27+200	27+500	i	0.3	Seismic
D03	28+400	28+600	i	0.2	Seismic
D04	28+600	29+600	i	1	Resistivity
D05	36+800	37+300	i	0.5	Resistivity
D06	37+300	37+800	i	0.5	Seismic
D07	37+800	38+900	i	1.2	Resistivity
D08	10+200	10+700	iii LLR	0.5	Seismic
D09	300	900	iii	0.6	Resistivity
D10	900	1+300	iii	0.4	Seismic
D11	1+300	2+700	:::	1.4	Resistivity
D12	2+700	3+100	:::	0.4	Seismic
D13	3+100	5+300	ij	3.2	Resistivity
D14	8+500	11+000	ij	2.5	Resistivity
D15	12+000	13+000	iii	1	Resistivity
D16	15+000	18+000	iii	3	Resistivity
D17	20+000	21+000	iii	1	Resistivity
D18	25+200	25+900	iii	0.7	Resistivity
D19	29+500	30+700	iii	1.2	Resistivity
D20	36+400	36+800	iii	0.4	Seismic
D21	38+600	39+300	iii	0.7	Resistivity
D22	39+300	39+700	iii	0.4	Seismic
D23	39+800	41+300	iii	0.5	Resistivity
D24	43+200	43+500	iii	0.3	Seismic
D25	51+700	55+300	iii	3.6	Seismic
D26	68+600	69+800	iii	0.2	Seismic
D27	70+800	71+600	iii	0.8	Resistivity
D28	90+700	91+300	iii	0.6	Seismic
D29	91+800	92+600	iii	0.8	Resistivity
D30	96+200	98+200	iii	2	Resistivity
D31	1+000	1400	:=	0.4	Seismic
D32	9+000	10+000	ii	1	Seismic
D33	14+500	14+900	ii	0.4	Seismic
D34	20+900	21+600	ii	0.7	Seismic
D35	27+300	27+700	ii	0.4	Seismic
D36	29+500	29+900	ii	0.4	Seismic
D37	32+000	32+400	ii	0.4	Seismic
D38	27+700	29+000	ii	1.3	Resistivity
D39	62+500	64+000	ij	1.5	Seismic
D40	71+000	71+700	ii	0.7	Seismic
D41	73+000	73+400	ii	0.4	Seismic

September – December 2008

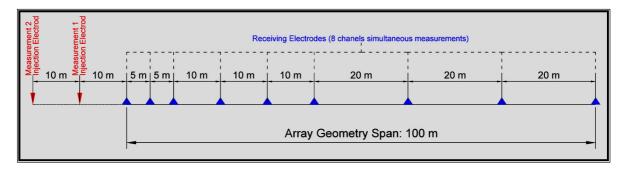
General Information

Survey Line Parameters

	Volume name	D09		
	Survey type	Resistivity		
Projected Peremeters	Task	iii		
Projected Parameters	Km from	0+300		
	Km to	0+900		
	Length (km)	0.6		
	Length (km)	0.64		
	Maximum offset from projected line	15 m		
Survey Parameters	Data acquisition period	13.09.2008		
	Weather condition	Cloudy + Showers		
	Brief terrain description	Flat terrain covered by pasture lands		
Notes:				

Maximum offset is due to projected motorway curvature

See Annex 09/41 (Survey Line Location and Results)


Survey equipment

Data acquisition stage was completed using the following equipment:

- ZONGE, 2.5 kW IP Transmitter
- SCINTREX IPR 12 IP Receiver •
- Non-polarizable Electrodes

Array geometry: pole-dipole

- 16 depth levels resolution
- 40 meters depth of investigation •
- 20 meters station step •

Data Acquisition Parameters

Measurement Parameters

Input signal: square wave (4s I+, 4s 0, 4s I-, 4s 0).

Additional chargeability measurements were recorded over 340-520 ms window span.

Quality Control

To insure reliability of acquired data several stages for quality control were applied to data processing workflow:

- Each measurement was averaged at over five cycles.
- To insure repeatability and reliability, up to 5% out of total measurements were repeated in the same station point;
- Quality control was applied in each stage of the processing workflow using specific programs and routines to filter any abnormalities found within raw data

Results

Results were organized as follows:

- 1. Three Longitudinal Sections (*See. Annex 09/41*) covering all volume length containing:
 - a. *Inverted Resistivity and Chargeability* (Vertical and Horizontal Scale 1:1000)
 - b. Plan location of Survey Line and Projected Volume (Scale 1 : 5000)
 - c. Interpretation of physical parameters distribution
- 2. Raw data available in several suitable formats
- 3. Topographic data for each measurement location
- 4. Inverted Result Data in suitable formats (easy to integrate into any follow up workflow).

Resistivity Survey Project Coordinator Eng. Filip ONESCU

Report and Drawings prepared by **Eng. Filip ONESCU**

Verified by: Eng. Horia NISTOR

Approved by: Eng. Dan ONESCU